Rate of Convergence of Durrmeyer Type Baskakov-Bezier Operators for Locally Bounded Functions
نویسنده
چکیده
In the present paper, we introduce the Durrmeyer variant of Baskakov-Bezier operators Bn,α(f, x), which is the modified form of Baskakov-Beta operators. Here we obtain an estimate on the rate of convergence of Bn,α(f, x) for functions of bounded variation in terms of Chanturiya’s modulus of variation. In the end we also propose an open problem for the readers.
منابع مشابه
A Note on the Bezier Variant of Certain Bernstein Durrmeyer Operators
In the present note, we introduce a Bezier variant of a new type of Bernstein Durrmeyer operator, which was introduced by Gupta [3]. We estimate the rate of convergence by using the decomposition technique of functions of bounded variation and applying the optimum bound. It is observed that the analysis for our Bezier variant of new Bernstein Durrmeyer operators is different from the usual Bern...
متن کاملRate of Convergence for a General Sequence of Durrmeyer Type Operators
In the present paper we give the rate of convergence for the linear combinations of the generalized Durrmeyer type operators which includes the well known Szasz-Durrmeyer operators and Baskakov-Durrmeyer operators as special cases.
متن کاملRate of convergence of bounded variation functions by a Bézier-Durrmeyer variant of the Baskakov operators
is the Baskakov basis function. Note that (1.1) is well defined, for n ≥ r +2, provided that f(t) = O(tr ) as t → ∞. The operators (1.1) were first introduced by Sahai and Prasad [9]. They termed these operators as modified Lupaş operators. In 1991, Sinha et al. [10] improved and corrected the results of [9] and denoted Ṽn as modified Baskakov operators. The rate of convergence of the operators...
متن کاملOn convergence of certain nonlinear Durrmeyer operators at Lebesgue points
The aim of this paper is to study the behaviour of certain sequence of nonlinear Durrmeyer operators $ND_{n}f$ of the form $$(ND_{n}f)(x)=intlimits_{0}^{1}K_{n}left( x,t,fleft( tright) right) dt,,,0leq xleq 1,,,,,,nin mathbb{N}, $$ acting on bounded functions on an interval $left[ 0,1right] ,$ where $% K_{n}left( x,t,uright) $ satisfies some suitable assumptions. Here we estimate the rate...
متن کاملRate of Convergence on Baskakov-beta-bezier Operators for Bounded Variation Functions
by replacing the discrete value f(k/n) by the integral (n−1)∫∞ 0 pn,k(t)f (t)dt in order to approximate Lebesgue integrable functions on the interval [0,∞). Some approximation properties of the operators (1.1) were discussed in [6, 7, 8]. In [2, 3], the author defined another modification of the Baskakov operators with the weight functions of Beta operators so as to approximate Lebesgue integra...
متن کامل